Major Study Groups: Birds

Social learning, culture and cultural evolution in birds (Aves)

Lucy Aplin
1. Evidence for social learning in birds

“Learning that is influenced by observation or interactions with another individual or its products” Heyes 1994 Biol. Rev 69: 207-231

© Marc Freeman
This Lecture

1. Evidence for social learning in birds: ecological contexts
 - Vocalisations
 - Foraging Skills

2. Evidence for cultural inheritance and vertical transmission
 - Cross-fostering experiments
 - Evidence from imprinting
 - Imprinting x Cross fostering: across-species fostering

3. Wild cultures?
 - Vocal cultures: song and dialects
 - Tool use in New Caledonian crows

4. Spread of innovation and cultural change
 - Human induced innovation and change
 - Cultural diffusion experiments in tits
 - Cultural evolution in song
1. Evidence for social learning in birds: ecological contexts
 - Vocalisations
 - Foraging
1. Evidence for social learning in birds: ecological contexts

- **How to eat** (foraging skills etc.)
- **What to eat** (diet choice)
- **Where to go and settle** (movement)
- **Mate choice** (who, when)
- **Nesting?** (site choice, nest construction)
- **Fear responses** (mobbing, alarm calls)
- **Vocalisations and signals** (song, calls, displays)
- **Social behaviours?** (social tendencies and skills)
1a. Evidence for social learning in birds: song
1a. Evidence for social learning in birds: song

Song learning in zebra finches, *Taeniopygia guttata*

Lachlan et al. (2016) Frontiers in Psychology
1a. Evidence for social learning in birds: song

Experimental demonstration of vocal learning of song in wild Savannah sparrows (*Passerculus sandwichensis*)

Mennill et al. (2018) Current Biology
1b. Evidence for social learning in birds: how to eat

Milk-bottles revisited: Social learning and individual variation in blue tits

Aplin, L.M., Morand-Ferron, J., Sheldon, B.C.
1b. Evidence for social learning in birds: how to eat

Aplin et al. (2013) Animal Behaviour
1b. Evidence for social learning in birds: how to eat

The New Caledonian Crow (Corvus moneduloides)

Figure 2. The three different Pandanus tool designs described on Grande Terre. (A) Wide tool. (B) Narrow tool. (C) Stepped tool.

Figure 4. Development of wide Pandanus tool manufacture techniques. N = the total number of tools manufactured by the members of each age class.

This Lecture

1. Evidence for social learning in birds: ecological contexts
 - Vocalisations
 - Foraging
 - Movement

2. Evidence for cultural inheritance and vertical transmission
 - Cross-fostering experiments
 - Evidence from imprinting
 - Imprinting x Cross fostering: across-species fostering
2. Cultural inheritance: experiments

Information transmitted from previous generations. Can form a potentially important part of individuals' behavioural repertoire, when it is often referred to as a ‘second inheritance system’ (Whiten, 2005)
2. Cultural inheritance
2. Cultural inheritance

Information transmitted from previous generations. Can form a potentially important part of individuals' behavioural repertoire, when it is often referred to as a ‘second inheritance system’ (Whiten, 2005)

© Kerry Lukowski

Norton-Griffiths (1967) Ibis
2b. Cultural inheritance: cross fostering experiments

Table 2: The Feeding Techniques Developed by Cross-Fostered Young Oystercatchers

<table>
<thead>
<tr>
<th>Parents' Specialisations</th>
<th>Foster-parents' Specialisations</th>
<th>Feeding Techniques of the Young</th>
</tr>
</thead>
<tbody>
<tr>
<td>mussel-stab (a)</td>
<td>mussel-hammer (b)</td>
<td>just independent</td>
</tr>
<tr>
<td>mussel-stab (c)</td>
<td>crab-eater (d)</td>
<td>2nd year from parents</td>
</tr>
<tr>
<td>mussel-hammer (b)</td>
<td>mussel-stab (a)</td>
<td>mussel-hammer</td>
</tr>
</tbody>
</table>

Note: (a), (b), (c), (d) refer back to Table 1.

Cross-fostering

Eurasian Oystercatcher on nest with 3 eggs

2. Cultural inheritance: experiments

Information transmitted from previous generations. Can form a potentially important part of individuals' behavioural repertoire, when it is often referred to as a ‘second inheritance system’ ([Whiten, 2005](#)).

Horwich (1989) Zoo Biology; Nesbitt (1979) *Proceedings of the 1978 Crane Workshop*
2. Cultural inheritance: experiments

Information transmitted from previous generations. Can form a potentially important part of individuals' behavioural repertoire, when it is often referred to as a ‘second inheritance system’ (Whiten, 2005)

Fig. 2. Costume used for rearing crane chicks in isolation from humans.
2c. Cultural inheritance: evidence from imprinting

Social learning of migration routes in endangered whooping cranes (*Grus Americana*)

Courtesy of www.operationmigration.org
2c. Cultural inheritance: evidence from imprinting

Fig. 1. Whooping crane location data. (A) Migration map for the EMP of whooping cranes (2002–2009). We identified each bird’s summer and winter ranges in each year using the mean coordinates of all locations for that individual during summer and winter times when birds are not migratory. We then identified the straight-line path for each migration event linking consecutive summer and winter (or winter and summer) ranges for each bird. We calculated the deviation of each migratory relocation from the straight-line path and used this as a simple proxy for migratory performance. Variation in data availability over the 8 years of the study precluded application of more complex measures of deviation, such as those based on full trajectories that might take into account heterogeneity in wind strength and direction, topography, and the availability of suitable stopover sites. (B) Typical migratory pattern for two 1-year-old individuals migrating in spring 2005 traveling without (red) and with (blue) older birds.

Social learning of migration routes in endangered whooping cranes (Grus Americana)

Courtesy of www.operationmigration.org
2d. Cultural inheritance: across species cross-fostering

“Learning the ecological niche”
Series of studies from Slagsvold et al. cross fostering great tits (Parus major), blue tits (Cyanistes caeruleus) and pied flycatchers (Ficedula hypoleuca)

2d. Cultural inheritance: across species cross-fostering

Figure 1 (a) Photograph showing mixed brood of great tits and a blue tit. (b) Graph adapted from Johannessen et al. [53] comparing example sonograms of control song (i,iii) to the song of cross-fostered birds (ii,iv). (c) Graph adapted from Slagsvold & Wiebe [5] comparing the foraging height of juveniles (open bars) and adults (filled bars) in August-September after differ rearing conditions. (d) Graph adapted from Slagsvold & Wiebe [6] comparing prey volume relative to body size that were fed to chicks by birds that were previously themselves cross-fostered (filled bars) or not (open bars).
1. Evidence for social learning in birds: ecological contexts
 - Vocalisations
 - Foraging
 - Movement

2. Evidence for cultural inheritance and vertical transmission
 - Cross-fostering experiments
 - Evidence from imprinting
 - Imprinting x Cross fostering: across-species fostering

3. Wild cultures?
 - Vocal cultures: song and dialects
 - Tool use in New Caledonian crows
3. Cultural Variation in the Wild?

1. Typical Savannah Sparrow song
 - Frequency (kHz)
 - Time (sec)
 - Wild Savannah Sparrow that learned song from playback tutor
 - Mennill et al. (2018) Current Biology

2. Whiten et al. (1999) *Nature*
3a. Vocal culture: song and dialects

Map of the Pacific Northwest coast showing 6 out of 13 song dialects in the Puget Sound white-crowned sparrow (Nelson et al. 2004). Numbers refer to locations where different dialects derive. These are shown on sonograms to left.
3a. Vocal culture: **song** and dialects

Swamp sparrows, *Melospiza georgiana* appear to exhibit conformist bias. A simple mechanism of overproduction and selective attrition can allow for stable traditions over centuries.
3a. Vocal culture: song and dialects

What about other kinds of vocalisations, and about birds which exhibit life-long vocal learning?
- Vocal dialects in parrots…
3a. Vocal culture: song and dialects

Regional dialects in the contact calls of the yellow-naped amazon (Amazona auropalliata)

Figure 1. Map of northwestern Costa Rica showing the distribution of roosts and dialects. The circles indicate Northern dialect roosts, the squares Southern roosts, triangles Border roosts, and the diamond the single Nicaraguan dialect roost discovered. The 16 numbered roosts were used in the spectrogram correlation analysis.
3a. Vocal culture: song and dialects

Figure 1. Map of northwestern Costa Rica showing the distribution of roosts and dialects. The circles indicate Northern dialect roosts, the squares Southern roosts, triangles Border roosts, and the diamond the single Nicaraguan dialect roost discovered. The 16 numbered roosts were used in the spectrogram correlation analysis: 1-Penas Blancas

Figure 2. Spectrograms and waveforms of yellow-naped amazon contact calls. (a) Calls from two different birds at each of three separate Northern dialect roosts (i) roost 2; (ii) roost 5; and (iii) roost 8. (b) Calls from two different birds at each of three Southern dialect roosts (i) roost 12; (ii) roost 13; and (iii) roost 16. (c) Calls from: (i) two different birds at Nicaraguan dialect roost; and Northern and Southern dialect calls from (ii) a bird at Border roost 10 and a different individual at Border roost 9.
3b. Cultural Variation in the Wild – Foraging Cultures?

Figure 1. (summarised) Principal manufacture technique for each pandanus tool design (a) A crow making a basic cut and rip with the bill...Numbers inside the circles give the temporal sequence of cuts (see b–d); question marks indicate that the sequence of cuts cannot be inferred. An arrow attached to a circle indicates an associated rip and its direction. (b–d) The same symbols and leaf section as in (a) describe the techniques used to manufacture a narrow tool, a one-step tool and a three-step tool, respectively.
3b. Cultural Variation in the Wild – Foraging Cultures?

Figure 1. (summarised) Principal manufacture technique for each pandanus tool design (a) A crow making a basic cut and rip with the bill...Numbers inside the circles give the temporal sequence of cuts (see b–d); question marks indicate that the sequence of cuts cannot be inferred. An arrow attached to a circle indicates an associated rip and its direction. (b–d) The same symbols and leaf section as in (a) describe the techniques used to manufacture a narrow tool, a one-step tool and a three-step tool, respectively.

Figure 4. Proposed evolutionary history of the diversification and cumulative change in pandanus tool designs. Design innovations associated with the initial use of pandanus leaf as tools (wide design) and subsequent design changes (narrow and stepped designs) are briefly described at right of each tool. The section of pandanus leaf is ca. 5 cm wide.
1. Evidence for social learning in birds: ecological contexts
 - Vocalisations
 - Foraging
 - Movement

2. Evidence for cultural inheritance and vertical transmission
 - Cross-fostering experiments
 - Evidence from imprinting
 - Imprinting x Cross fostering: across-species fostering

3. Wild cultures?
 - Vocal cultures: song and dialects
 - Tool use in New Caledonian crows

4. Spread of innovation and cultural change
 - Human induced innovation and change
 - Cultural diffusion experiments in tits
 - Cultural evolution in song
4. Spread of Innovation and cultural change
4a. Spread of Innovation: observations
4a. Spread of Innovation: observations

4a. Spread of Innovation: observations

Fig. 1 Kea engaged in bin opening (drawn from a photo)
4a. Spread of Innovation: observations

Novel challenge or opportunity

An innovation in behaviour

Social learning & transmission

Persistent group-level change

Animal Culture

Fisher & Hinde (1949) *British Birds*; Aplin et al. (2016) *Current Opinions*
4b. Spread of Innovation & Culture: experiments in tits

Aplin et al. (2015) Nature
4b. Spread of Innovation & Culture: experiments in tits

Aplin et al. (2015) Nature
4b. Spread of Innovation & Culture: experiments in tits
4b. Spread of Innovation & Culture: experiments in tits
A single “innovator” is sufficient to establish a **persistent**, arbitrary behaviour, performed by the **majority**, transmitted to the next **generation**.
4b. Spread of Innovation & Culture: experiments in tits

- Novel challenge or opportunity
- An innovation in behaviour
- Social learning & transmission
- Persistent group-level change

Animal Culture

Fisher & Hinde (1949) *British Birds*; Aplin et al. (2016) *Current Opinions*
4c. Cultural Evolution in Vocalisations

Experiments in zebra finches – colonies started by “acoustic isolates” produce different songs than natural colonies, but evolve towards the wild type over 3-4 generations.

Fig. 1: Wild-type songs versus isolate songs.

O Fehér et al. (2009) Nature
4c. Cultural Evolution in Vocalisations

Experiments in zebra finches – colonies started by “acoustic isolates” produce different songs than natural colonies, but evolve towards the wild type over 3-4 generations.

Fig. 2: Progression of song over generations of isolated colonies
In wild birds, songs can also change over generations, driven by processes such as drift, founder-effects and population bottlenecks (cultural evolution). Example 1: saddlebacks (*Philesturnus rufusater*) song loses diversity and variability after translocation, and then gradually regains it over time while also becoming more distinct.
4c. Cultural Evolution in Vocalisations

In wild birds, songs can also change over generations, driven by processes such as drift, founder-effects, population bottlenecks and relaxed selection (cultural evolution). Example 2: chaffinch song progressively loses syntactical structure during island colonization, likely because of relaxed selection on learning biases.

(A) Map of the recording locations used in this study (with number of males recorded in parentheses) and the route of island colonization by chaffinches... (B) Spectrogram of a chaffinch song from the Catalonia population.

Lachlan et al. (2013) Current Biology
Suggested Reading

