Exercise 5
by Jamie Tehrani and Joe Stubbersfield

Background

In research examining minimally counterintuitive (MCI) bias, a valuable approach has been to examine collections of international folktales and to code them for counterintuitive elements. In this exercise you will code a selection of international folktales for counterintuitive elements - defined as violations of intuitive assumptions of biology, physics and psychology.

Coding

To code the tales, identify elements of the story which breach intuitive assumptions in biology, physics or psychology and write a brief summary of the element and how it violates assumptions in the relevant column in the work sheet. Enter the total number of violations in the total column. For example, if you were to code **Little Red Riding Hood** (Charles Perrault 1697) from Exercise 2 in the way, you would code it as:

<table>
<thead>
<tr>
<th>Folktale</th>
<th>Assumption Violations</th>
<th>Biology</th>
<th>Physics</th>
<th>Psych</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Little Red Riding Hood</td>
<td>Wolf who can talk as a human</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
The Exercise

To complete the exercise, use the coding guidance above to code the four folktales found in the Folktales Material document. You can then compare your coding to the model answer. After completing the exercise, reflect on the key questions below.
Key Questions

How many total violations did the stories have?

Studies examining MCI bias find that most folktales have 1-3 counterintuitive elements. Do the tales you coded fit this proposed ‘cognitive optimum’? If you added more counterintuitive elements to the tales, do you think this would make them more appealing or less?

Discrepancies with the model answer?

Did you coding differ from the model answer? As with other coding exercises consistency, objectivity and reliability of coding is a key challenge. If these folktales were being coded for research purposes it would be common to use multiple coders, including ones who are unaware of the experimental hypothesis and work out the *inter-coder reliability*, essentially how similar their coding is. If the inter-coder reliability is high, then the coding is likely to be consistent, objective and reliable.